VSD-HDP : Verilator Verification Environment for RISC-V vector accelerator

Now this is how VSD wants to approach design verification - Something new, something exciting, something never done before - Probably, if you are reading this blog and would be interested in joining our design verification HDP program, you would be the first one in the whole world (like all VSD interns in past) to do this, may be publish it.
Email on [email protected] , if you are interested, and we will send you registration/payment link
Cohort Starting from Jan 15, 2022 for a duration of 10-weeks

Big Picture: There has been, for about a year, an activity to try to work on a RISC-V vector accelerator that is tailored to be able to execute machine learning workloads. And there is one innovation that we are trying to do that nobody else in the world does and that is to implement an instruction called fused dot-product.

A fused dot-product is a mechanism to introduce user-defined rounding in arithmetic. And if you do that, then what you gain is you are able to do smaller representations for the weights in the ML model. If we look at a traditional linear algebra execution engine, it will use a dot-product, but it will use a fused multiply-add. And if you do that then every sum of the “sum of products” that dot-product exists will have a rounding event. If we have a large matrix, which is typical in a machine learning environment, you have millions of rounding errors.

And the reason this is a problem for machine learning is that the matrices that are being used are such that they tend to be multi-modal. What it really means (from a numerical point of view) is that you have multiple peaks of energy that you are trying to resolve. And if you have rounding error, you will have one of these peaks basically attenuate to a point where it is no longer resolvable

This is what fused dot-product is solving

From a verification point of view, the real fun starts in the fact that we are going to bring in different arithmetic. We could bring in IEEE, we could bring in bfloat from Google, we could bring Microsoft fp9 or we can bring in the number system called posit, which is a tapered floating point.

There is research out there which people have done where they have demonstrated an 8-bit posit can compete with single precision IEEE floating point in these machine learning applications, if you use fused dot-product – That is the context of the project

Project description:

As you can imagine, there is close to 7000+ blocks that are of interest here that have their own complexity and need

The project which we are starting here is really to try to build a testbench and verification strategy that would allow us to, progressively over time, add these blocks that are of importance

We will start off with an integer ALU, not very much complexity in that, but it gives you a vehicle to start thinking about the whole verification strategy.

One of the things we are trying to do is adhere to opensource strategy, so that anybody can pick up this GitHub repo and be productive with this, without needing industrial tools. And one vehicle which is industrial strength for verification is Verilator

In a nutshell, the project really is to build a Verilator Verification environment i.e. a structure in which we can set up testbenches that are executed with Verilator. The thing which is interesting in this project is we are going to tie that Verilator piece with a golden model arithmetic library and that is going to be something that you can publish as nobody else in the world has that

It’s a Verilator Testbench environment that uses an online arithmetic library to generate the right bit pattern. We are not using randoms, but we are using a Golden model. If you progress from ALU to a vector accelerator, you will have a vector lane, vector register file, vector load/store unit, vector instructions.

We can layer this testbench in such a way that when a new project resource comes online and needs to implement (for eg.) vector scale instruction, then there is a reusable testbench structure which that person can quickly pick-up, set as their basic structure, build their functionality into it, and have a working testbench environment in which they can test their work

First Steps:

First round of HDP will be a testbench which is driven purely by a C++ verilog testbench that brings in the golden model. This is the first step in which you take a verilog module that is a transformation of some sort, and you tie that into a Verilator testbench that can drive that module and that can also drive the golden result. So,this is Verilator specific in the sense that Verilator is really the main function of C++ program. And when you bring in a verilog module, that gets transformed into a C++ code that then gets driven by the main function of Verilator.

There are 2 problem statements here

One is to setup the environment so that you have the right Makefile, you have the right structure which you can expand to new functional units

Second is how to link in the golden model

Summary of Project execution:

1.      Articulate a productive organization in which testbenches are built

2.      Then we need a productive Makefile that a programmer or designer can simply say “make test” and you have the test environment

3.      Then we need to have integration with the golden model which brings in new GitHub repo and that machinery needs to be figured out

Registration for Ethical RISC-V IoT Workshop

Welcome to Ethical RISC-V IoT Workshop

The “Ethical RISC-V IoT Workshop” at IIIT Bangalore, organized in collaboration with VSD, is a structured, educational competition aimed at exploring real-world challenges in IoT and embedded systems. Participants progress through three stages: building an application, injecting and managing faults, and enhancing application security. The event spans from May 9 to June 15, 2024, culminating in a showcase of top innovations and an award ceremony. This hands-on hackathon emphasizes learning, testing, and securing applications in a collaborative and competitive environment.

Rules :
  1. Only for Indian Student whose college is registered under VTU
  2. Only team of 2 members can Register
  3. Use only VSDSquadron Mini resources for product development
Awards :
  1. Prize money for final 10 Team
  2. 3 Winner team’s Product will be evaluated for Incubation
  3. 7 consolation prizes
  4. Completion Certificate to final round qualifier
  5. Chance to build a Proud Secured RISC-V Platform for India

Date for Registration : 9th May - 22nd May, 2024
Hackathon Inauguration : 23rd May 2024

VSDSquadron (Educational Board)

VSDSquadron, a cutting-edge development board based on the RISC-V architecture that is fully open-source. This board presents an exceptional opportunity for individuals to learn about RISC-V and VLSI chip design utilizing only open-source tools, starting from the RTL and extending all the way to the GDSII. The possibilities for learning and advancement with this technology are limitless.

Furthermore, the RISC-V chips on these boards should be open for VLSI chip design learning, allowing you to explore PNR, standard cells, and layout design. And guess what? vsdsquadron is the perfect solution for all your needs! With its comprehensive documentation and scalable labs, thousands of students can learn and grow together.

VSD HDP (Hardware Design Program) Duration-10 Week

With VSD Hardware Design Program (VSD-HDP),  you have the opportunity to push the boundaries of what exist in open source and establish the new benchmark for tomorrow.

It will leverage your degree in Electrical or Computer Engineering to work with

  • Programmable logic
  • Analog/ digital IP
  • RISC-V
  • Architecture & microprocessors
  • ASICs and SoCs on high-density digital or RF circuit cards
  • Gain hands-on knowledge during design validation and system integration.

Sounds exciting to just get started with expert mentors, doesn’t it? But we are looking for the next generation of learners, inventors, rebels, risk takers, and pioneers.

“Spend your summer working in the future !!”

Outcomes of VSD Online Research IP Design Internship Program

  1. Job opportunities in Semiconductor Industry
  2. Research work can be submitted to VLSI International journals
  3. Participate in Semiconductor International Conference with Internship Research Work
  4. Paper Publications in IEEE Conference and SIG groups
  5. Tape out opportunity and IP Royalty
  6. Interact with world class Semiconductor designer and researchers
  7. Academic professions where more research projects are encouraged.
  8. All the above research and publication work will help colleges and institutes to improve accreditation levels.

Know More Information

VSD – Intelligent Assessment Technology (VSD-IAT)

VSD – Intelligent Assessment Technology (VSD-IAT) is expertly built training platform and is suited for designer requirements. Semiconductor companies understand the value of training automation and Engineer performance enhancement, and do not need to be convinced of the impact of a virtual platform for learning. VSD trainings are quick, relevant, and easy to access from any device at any time zone.

VSD Intern Webinars

VSD Interns made it happen !!

VSD is working towards creating innovative talent pool who are ready to develop design and products for the new tech world. VSD believes in “Learning by doing principle” , and always prepare the student to apply the knowledge learned in the workshops, webinars and courses. We always push our students to work on new designs, test it and work continuously till it becomes the best performing design. Any student who enrolls to VSD community starts working with small design and grows with us and develops a tapeout level design with complete honesty and dedication towards the Work !!

Check out VSD Interns Achievement!

VSDOpen Online Conference

Welcome to the World’s only online conference in Semiconductor Industry VSDOpen Conference. With enormous support and global presence of audience from different segments of industrial lobby and academia made a highly successful event. Evolution is change in the genetic makeup of a population over time, online conference is one kind evaluation everyone adapt soon. 

  • VSDOpen 2022 is an online conference to share open-source research with the community and promote  hardware design mostly done by the student community.
  • VSDOpen 2022 is based on the theme “How to lower the cost to learn, build, and tapeout chips ?”  , which will provide a platform to community to build stronger designs and strengthen the future of Chip design.
  • VSDOpen is envisioned to create a community based revolution in semiconductor hardware technology.
  • The open source attitude is required to bring out the talent and innovation from the community who are in remote part of world and have least access to the technologies.  And now Google support will help to bring the vision to execution by VSD team

VSD Online Course by Kunal Ghosh

VSD offers online course in complete spectrum of vlsi backend flow from RTL design, synthesis and Verification, SoC planning and design, Sign-off analysis, IP Design, CAD/EDA automation and basic UNIX/IT, Introduction to latest technology – RISC-V, Machine intelligence in EDA/CAD, VLSI Interview FAQ’s.

Current Reach – As of 2021, VSD and its partners have released 41 online VLSI courses and was successfully able to teach  ~35900 Unique students around 151 countries in 47 different languages, through its unique info-graphical and technology mediated learning methods.

Enquiry Form