

Electronics & ICT Academy

(Under Ministry of Electronics and Information Technology, Government of India)
Indian Institute of Technology Guwahati, Guwahati, Assam, Pin 781039

Phone: +91-361-2583182, 2583009 Email: eictacad@iitg.ac.in

WORKSHOP ON

"DEVICE MODELING USING SYNOPSYS SENTAURUS"

(Date: 16-20 September, 2019)

Venue: NIT Manipur

Reporting Time on 16 Sept, 2019 : 9:00 AM

 Course Duration on 17 – 20 Sept, 2019
 :
 9:30 AM – 5.30 PM

 Morning Tea Break
 :
 11:00AM – 11.10AM

 Lunch Break
 :
 1:00 PM – 1:40 PM

 Evening Tea Break
 :
 03:30PM – 3:40PM

Day 1(16 - 09 - 19)

<u>Aim:</u> To study the importance of MOSFET device and understand TCAD flow to model MOSFET using sprocess, sdevice and svisual (<u>Theory</u> – 4 hours, <u>Lab</u> – 3 hours)

- Chip design flow overview
- Impact of device modelling on entire chip design flow
- How to characterize inverter delay and butterfly curve using ngSPICE?
- Introduction to generic TCAD flow using sprocess, sdevice and svisual

Day 2(17 - 09 - 19)

<u>Aim:</u> NMOS Drain current modelling, SPICE simulations and Introduction to 16-Mask CMOS process (<u>Theory</u> - 3 hours, <u>Lab</u> - 4 hours)

- Strong inversion, threshold voltage with and without substrate potential
- NMOS resistive and saturation region of operation
- Velocity saturation drain current model
- 16-Mask process CMOS technology

Day 3(18-09-19)

<u>Aim:</u> NMOS device modelling using sprocess, characterization using sdevice and analysis using svisual (<u>Theory</u> – 3 hours, <u>Lab</u> – 4 hours)

- Pao/Sah's Double integral and charge sheet model
- Introduction to 'sprocess' and 'sdevice' command files for NMOS

Electronics & ICT Academy

(Under Ministry of Electronics and Information Technology, Government of India)
Indian Institute of Technology Guwahati, Guwahati, Assam, Pin 781039

Phone: +91-361-2583182, 2583009 Email: eictacad@iitg.ac.in

Analyze drain current and MOS Capacitance plots using 'svisual'

Day 4(19 - 09 - 19)

<u>Aim:</u> PMOS drain current modelling, PMOS device modelling using sprocess, characterization using sdevice and analysis using svisual ($\underline{\text{Theory}} - 2 \text{ hour}$, $\underline{\text{Lab}} - 5 \text{ hours}$)

- Introduction to PMOS device and its drain current
- Introduction to 'sprocess' and 'sdevice' command files for PMOS
- Analyze drain current and MOS Capacitance plots using 'svisual'

Day 5(19-09-19)

<u>Aim:</u> NMOS/PMOS device BSIM model extraction using sdevice/svisual and "butterfly" curve analysis (<u>Theory</u> - 4 hours, <u>Lab</u> – 3 hours)

- Steps to extract BSIM models for NMOS and PMOS
- Introduction to standard SRAM butterfly curve
- Plug above NMOS/PMOS extracted BSIM models to generate butterfly curve and analyze performance using ngspice
- Fine tune device parameters, redo NMOS/PMOS device modelling using TCAD flow and reanalyze butterfly curve using new extracted BSIM models