
An automated C-to-GDS flow using open-source EDA tools
for medium-sized SOC design and implementation

Kunal Ghosh & Anagha Ghosh
VLSI System Design Corp. Pvt. Ltd.
contactvsd@vlsisystemdesign.com — (91) 9686428727

Abstract

VSDFLOW is an automated solution to programmers, hobbyists
and small scale semiconductor technology entrepreneurs who can craft
their ideas in C language, and convert the design to hardware us-
ing VSD (C-to-GDS) FLOW. VSDFLOW is completely build using
OPHW tools, where the user gives input algorithm in C. From here on
the VSDFLOW takes control, algorithm (in C-language) is converted
to RTL (using AHIR compiler), RTL is synthesized (using Yosys). The
synthesized netlist is given to PNR tool (Qflow) and finally Sign-off
is done with STA tool (using Opentimer). The output of the flow is
GDSII layout and performance & area metrics of your design. VSD-
FLOW also provide hooks at all stages for users working at different
levels of design flow. It is tested for 30k instance count design like
ARM Cortex-M0, and can be further tested for multi-million instance
count using hierarchical or glue logic.

Introduction

In recent years, there has been a steep increase in OPHW EDA
tool usage, specially, among students and educational institutes,
looking for a solution to innovate and implement their ideas.
OPHW EDA toolset generally consists of a C-to-RTL compiler,
an RTL synthesizer, a place-and-route engine and static tim-
ing analysis engine. VSDFLOW provides a plug-n-play solu-
tion to use entire OPHW toolset under single umbrella, where
user needs to provide design in C language (or RTL language
as hook) and VSDFLOW will generate GDSII and performance
metrics of design. This enables user to focus on improvising
quality of design ideas, while leaving the implementation to
VSDFLOW. As a prototype, currently VSDFLOW uses toolset
shown in below figure no. 1

Figure 1: VSDFLOW framework

VSDFLOW is designed in such a flexible way, that user can
pitch-in at any point of flow and some of them are enumerated
below:

1. VSDFLOW hooks enables user to provide constraints in indi-
vidual tool format or standard SDC format. Using this feature,
user can switch to any tool within VSDFLOW framework.
See figure 2

Figure 2: Different constraints format

2. VSDFLOW allows user to feed design details and constraints
in generlaised format in csv file, which is a standard practise
in industries, and achieve desired results, there-by enabling
user to focus on crafting the best requirements for design. See
figure 3

Figure 3: Input to vsdflow in csv format

3. VSDFLOW has built-in proprietary-free commands, which
can be used in a stand-alone fashion on VSDFLOW terminal.
An example of proprietary-free command of VSDSYNTH
(VSDSYNTH is a ”synthesis+STA” section of VSDFLOW)
is shown in figure 4

Figure 4: Input to vsdflow in csv format

Results
We have tested VSDFLOW with OSU 180nm technology and
below designs show the results in terms of performance and area

OPENMSP430
This is a synthesizable 16bit microcontroller core which is writ-
ten in Verilog and available at opencores.org

Synthesis

Runtime 1min
Operating Frequency 142MHz
Instance Count 9353

PNR

Runtime 28min
Operating Frequency 187MHz
Area 965um x 697um
Instance Count 9353

Table 1: openMSP430 (by opencores.org)

PICORV32
PicoRV32 is a CPU core written by Clifford, that implements
the RISC-V RV32IMC Instruction Set and available on github

Synthesis

Runtime 1min
Operating Frequency 322MHz
Instance Count 14828

PNR

Runtime 1hr 20min
Operating Frequency 387MHz
Area 1192um x 877um
Instance Count 14828

Table 2: picorv32 (by Clifford)

CORTEX-M0
An example system of MCU which contains a single cortex-m0
processor, internal program memory, SRAM data memory and

boot-loader. Other peripherals include timers, GPIO, UART and
watchdog timer. The evaluation RTL is available on ARM web-
site

Synthesis

Runtime 1min 9sec
Operating Frequency 238MHz
Instance Count 29479

PNR

Runtime 3hr 47min
Operating Frequency 139MHz
Area 1705um x 1237um
Instance Count 29479

Table 3: Cortex-M0 (by ARM)

E31 ECoreplexIP system

E31 Coreplex is a high performance implementation of the
RISC-V RV32IMAC architecture. The evaluation RTL is avail-
able on SiFive website

Synthesis

Runtime 1hr 55min
Operating Frequency 127MHz
Instance Count 1614028

PNR

Runtime WIP*
Operating Frequency WIP*
Area WIP*
Instance Count WIP*

Table 4: E31 ECoreplexIP system (by SiFive)

Conclusions
• VSDFLOW was shared with VSD community and 253 people

sucessfully executed their designs with this flow

• A beginners guide in form of video course is developed to
assist for OPHW tool installation and enhanced the usage of
VSDFLOW, which in turn is bringing out new ideas and de-
signs

• VSDFLOW has been tested and works seamlessly on de-
signs upto 100k instance count, from opencores(for eg. open-
MSP430) and industry(ARM, SiFive)

Forthcoming Research
1. For design size with more than 100k to 1.6M instance count,

a hierarchical approach is under development

2. VSDFLOW is working towards to include post-layout timing
results with back-annotated parasitics included

3. VSDFLOW is enabling an automated timing ECO frame-
work, using ECO engine from Opentimer. Using this feature,
user will be able to provide list of violating endpoints and
VSDFLOW-ECO will return list of ECO fixes

Acknowledgements
• Thanks to Tim Edwards, who has been continously helping

in various aspects of qflow enablement within VSDFLOW.
Tim’s continous and timely support has been really helpful in
VSDFLOW inception and making it available for community
usage

• Thanks a lot to Tsung-Wei Huang for prompt response on
any query relate to Opentimer, which has led to resolve
many doubts and queries raised by community to VSD team.
From community feedback, Tsung-Wei Huang plans to up-
date Opentimer STA tool, which will support advanced timing
models

————————————————————————–
*graywolf placement runtime reduction for designs with in-
stance count 100k+ is under work

https://opencores.org/project,openmsp430
https://opencores.org/project,openmsp430
https://github.com/cliffordwolf/picorv32
https://github.com/cliffordwolf/picorv32
https://developer.arm.com/products/designstart/processor-ip/evaluate
https://developer.arm.com/products/designstart/processor-ip/evaluate
https://developer.arm.com/products/designstart/processor-ip/evaluate
https://dev.sifive.com/coreplex-risc-v-ip/evaluate/rtl/
https://dev.sifive.com/coreplex-risc-v-ip/evaluate/rtl/

