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Abstract—We present a high-level synthesis flow for mapping
an algorithm description (in C) to a provably equivalent register-
transfer level (RTL) description of hardware. This flow uses an
intermediate representation which is an orthogonal factorization
of the program behavior into control, data and memory aspects,
and is suitable for the description of large systems. We show
that optimizations such as arbiter-less resource sharing can be
efficiently computed on this representation. We apply the flow
to a wide range of examples ranging from stream ciphers to
database and linear algebra applications. The resulting RTL is
then put through a standard ASIC tool chain (synthesis followed
by automatic place-and-route), and the performance and power
dissipation of the resulting layout is computed. We observe that
the energy consumption (per completed task) of each resulting
circuit is considerably lower than that of an equivalent executable
running on a low-power processor, indicating that this C-to-RTL
flow offers an energy efficient alternative to the use of embedded
processors in mapping algorithms to digital VLSI systems.

I. INTRODUCTION

The design of complex digital systems is expensive due to

two reasons: the need for trained manpower, and the difficulty

of verification at every step of the design process. Thus, it

is often the case that low-power embedded microprocessors

are used to implement complex algorithms in digital systems,

so that the design and verification problems are moved to the

software domain. A high-level synthesis flow which maps an

algorithm directly to a hardware description can be a potential

alternative if it provides a verifiable and optimizable path from

executable specifications[1] to hardware.

In addition to the ease of use, performance measures

and energy considerations are standards by which a high-

level synthesis flow should be judged relative to the compet-

ing methodologies — custom designed RTL and embedded

processors. It is very critical that the results of the high-

level synthesis flow are characterized with respect to their

area/power/delay/energy, both in absolute terms and relative to

competing methodologies. As far as comparisons with custom

designed hardware are concerned, a high-level synthesis flow

which starts from a C/C++ description of the algorithm is

unlikely to be competitive, mainly because the amount of

parallelism expressible in a C/C++ program is not sufficient.

It should be possible to address this shortcoming by starting

with algorithms described in parallel programming languages,

but such discussions are beyond the scope of this paper.

We provide comparisons between the hardware generated by

our high level synthesis flow and processor implementations

of an algorithm described in C. Note that it is not entirely

obvious that algorithm-specific hardware generated by a high-

level synthesis flow will be superior to embedded processor

implementations of the same algorithm. One can argue that the

algorithm-specific hardware can exploit the characteristics of

the algorithm to a greater degree than a general purpose pro-

cessor. On the other hand, when a C/C++ program is compiled

to a processor, the platform (that is, the processor) is usually a

heavily optimized circuit in which each functional element has

been tweaked to a high level, whereas the algorithm-specific

circuit is generated by automated tools whose optimization

abilities will most probably not match those of a human

designer. Finally, since it is not possible to express parallelism

directly in a C program (although a compiler can infer it),

it is not too clear whether a high-level synthesis system can

identify enough parallelism to make the resulting hardware

competitive with a heavily optimized processor. Concrete data

which throws light on these aspects is valuable.

Our high-level synthesis flow is based on a factored in-

termediate representation which guarantees the correctness of

the implementation, and supports optimizations that can scale

with the size of the program. The synthesis flow introduces an

intermediate step in the form of a representation called AHIR

(A Hardware Intermediate Representation). The representation

is independent of the programming language used, and can be

routinely translated to a hardware implementation, while also

supporting scalable optimizations[2][3].

In order to characterize the energy efficiency of the resulting

circuits, we select a wide range of applications (from stream

ciphers to databases and linear algebra) and run them through

our C-to-RTL flow. The resulting RTL is then mapped to

an ASIC using industry standard automatic synthesis tools.

This ASIC is characterized for power, delay, area and energy,

and the results are compared with those obtained when the

same program is mapped to a low power processor. The

results indicate that even in its current state, our high-level

synthesis flow is an energy competitive alternative to the use

of embedded processors in the design of complex systems.

II. RELATED WORK

There have been several approaches to the creation of a path

from high-level programs to hardware descriptions, which can

be loosely categorized as follows:



A. Improvements over RTL

Efforts such as Bluespec[4] raise the abstraction in an RTL

description in order to support higher-level constructs. Such a

language can be very powerful in expressing the architecture

of the hardware, but the target user is a hardware designer

who can effectively utilize this expressive power.

B. Modified high-level languages

Some efforts reinterpret programming languages as hard-

ware descriptions, and also extend them with special features.

The language SA-C[5], for example, is a purely functional

subset of C that disallows pointers. On the other hand,

Handel-C[6] is a language that guarantees complete ISO-C

compatibility and also provides additional primitives.

In both examples, the designer must use specific features to

generate efficient hardware, instead of the compiler inferring

a hardware implementation. This forces the programmer to

reevaluate standard programming practices.

C. High-level programs as hardware specifications

Some efforts interpret a program as a behavioral specifica-

tion, which is mapped to a hardware implementation using an

intermediate representation.

For example, the Phoenix project uses an intermediate

representation called Pegasus[7] for a compiler flow from C

to hardware[8]. A description in Pegasus can be implemented

as a micro-pipeline. The representation allows the compiler to

natively implement a number of high-level transformations.

The SPARK[9] project uses an internal representation based

on hierarchical task graphs (HTG). The compiler uses a

heuristic to combine high-level transformations on the HTG—

such as code motion and speculation[10] — with scheduling

and resource binding to produce efficient hardware.

Our work is similar, since the goal is to transparently

compile programs into hardware. AHIR differs from both

Pegasus and SPARK since it factorizes the system into three

separate components: control flow, data flow and memory. The

components can be optimized and implemented separately as

long as specified constraints are satisfied.

Several commercial tools which translate a C program to

hardware are also available, such as Catapult-C1 from Mentor

Graphics, C-to-Silicon2 from Cadence, and Synopsys HLS3

from Synopsys. Currently, we have no access to the internal

details of these proprietary tools.

III. AHIR

A system in AHIR is a collection of modules connected

to a memory subsystem as shown in Fig. 1. Each module

represents one function from the input program. Function

calls are implemented through an inter-module link layer. The

architecture of the memory subsystem is not defined in AHIR.

It is only required to service every request eventually.

1http://www.mentor.com/products/esl/high level

synthesis/
2http://www.cadence.com/products/sd/silicon

compiler/
3http://www.synopsys.com/Tools/SLD/HLS/

Fig. 1. An AHIR system.

Fig. 2. An AHIR module.

A. A module in AHIR

Two flows are described in an AHIR module — control-path

and data-path — that communicate through an intra-module

link layer as shown in Fig. 2. The control-path is a petri-net

that specifies the ordering of events in the module. The data-

path is a pool of hardware resources connected by wires.

Communication through the link layers is specified as an

exchange of symbols. The set of symbols associated with a

component is called its alphabet. The data-path uses alphabet

Σ, while the control-path uses alphabet Λ. The interaction with
the inter-module link layer is represented by the alphabet Ω.

B. Data-path

The data-path is a directed hyper-graph, where the edges

represent values, and the nodes represent operations on these

values. Each edge is a hyper-edge with a single tail and one or

more heads. The tail drives a value on the edge, which reaches

all the heads instantaneously.

A data-path node is described by a state machine with an

idle state, and one or more busy states. When a request reqi

arrives at an idle node, the node samples all its incoming data-

edges and changes state to busyi. The node then operates on

the sampled values and updates the outgoing data-edges. On

completion, the node emits an acknowledge symbol ackj , and

then returns to the idle state.
The data-path uses load and store operators to communicate

with external memory. Additionally, there are input and output

ports that are used to exchange arguments and return values

with the inter-module link layer during a function call.

C. Control-path

The control-path is a petri-net that expresses the sequence

in which events occur in a module. It is required to be in a

class called “Type-2 Petri-nets”, as defined in Section IV. The

circuit-level implementation paradigm to be used for an AHIR



Fig. 3. Delays in an AHIR specification.

module is not specified (the implementation may be syn-

chronous or asynchronous). Thus, petri-nets provide a neutral,

powerful and compact mechanism to describe parallelism in

the control flow of an algorithm. As we shall see in Section IV,

a “Type-2” petri-net provides an easily verifiable, yet powerful

enough mechanism to describe control flow.

The transitions in the control path are associated with input

and output symbols. An input transition is associated with an

input symbol (that is, the transition is assumed to have fired

when the input symbol is received by the control path), and

an output transition is associated with an output symbol (the

output symbol is emitted when the transition fires).

The control-path has a single marked place in the initial

marking. This enables a single transition called init, which

responds to a request symbol in alphabet Ω and begins

execution of the module. The end of execution is represented

by the fin transition that emits an acknowledgment symbol in

Ω and marks the initially marked place.

D. The Intra-module Link Layer

The intra-module link layer translates symbols generated

by the control-path (in Λ) to symbols for the data-path (in
Σ) or the inter-module link layer (in Ω), and vice versa. It
is defined as a set of functions that instantaneously consume

symbols presented to them and generate new symbols.

E. Handshakes and delay constraints

Operations in AHIR are managed by symbolic handshakes.

The control-path emits a request in Λ, which triggers an
operator in the data-path. When done, the operator emits an

acknowledge in Σ, which causes further events in the control-
path. This request-acknowledge handshake encapsulates any

delays in the implementation.

An implementation must satisfy a pair of one-sided delay

constraints for the handshake in order to ensure correctness.

Fig. 3 shows a hypothetical example with associated delays.

When the control-path emits the request symbol Req, it must
update its state before the arrival of the acknowledgment

symbol Ack. Hence we have:

d5 ≤ d0 + d1 + d3

Similarly, when the data-path emits an Ack, it eventually
receives a Req. The data inputs must have stabilized before
this request arrives. Hence we have:

d2 ≤ d3 + d4 + d0

Fig. 4. A TPR and a Type-1 petri-net

(a) Primitive (b) Series (c) Fork (d) Branch

(e) Parallel merges

Fig. 5. Type-2 construction rules.

Note that the term d0 + d3 is common to both expressions.

An implementation can always guarantee timing correctness

by sufficiently padding these delays to satisfy the constraints.

F. Execution model

AHIR uses the following execution model. The control-path

responds instantaneously to the arrival of symbols, while data-

path elements take some finite non-zero amount of time to

execute. Values in the data-path are also propagated instanta-

neously. Clearly, this satisfies the delay constraints, since d1

is finite, while other delays are zero. In principle, RTL im-

plementations of AHIR can be synchronous or asynchronous.

In our current flow however, we generate synchronous RTL

implementations from AHIR.

G. The Inter-module Link Layer

The inter-module link layer is used to route function calls

between modules. It has one arbiter for each module, that man-

ages the flow of input arguments and return values between

the calling module and the called module.

IV. TYPE-2 PETRI-NETS

Control paths in AHIR are instances of Type-2 petri-nets

(introduced in [3]), which are defined using a set of standard

construction rules, which ensure that the resulting petri-net

is live and safe. Further, the structure of a Type-2 petri-net

enables analyses and transformations that are scalable with

the size of the petri-net.

Definition 4.1: A simple place (transition) is a place

(transition) with one incoming edge and one outgoing edge.



Definition 4.2: A token-preserving region (TPR) is a

petri-net P that can be augmented with one simple place p̂
and a sufficient number of simple transitions and edges, to

produce a live and safe petri-net P ′ such that p̂ is the only
marked place in the initial marking (as shown in Fig. 4).

Definition 4.3: A Type-1 Petri-net is a live and safe petri-

net that marks one simple place in the initial marking. Clearly,

a Type-1 petri-net is constructed by augmenting a TPR.

Definition 4.4: A Standard TPR (STPR) is a TPR con-

structed using the standard set of rules (defined below).

Definition 4.5: A Type-2 petri-net is a Type-1 petri-net

created by augmenting a Standard TPR.

Type-2 construction rules:

1) A simple place or transition is a primitive STPR.

2) A series region is an STPR formed by joining two

standard STPRs in series.

3) A connected acyclic sub-graph made of STPRs, forks

and joins is itself an STPR called a fork region.

4) A connected (possibly cyclic) sub-graph made of

STPRs, branches and merges is an STPR called a branch

region.

5) Replacing a merge place in a branch region with parallel

merges as shown in Fig. 5(e) also results in a standard

TPR. The set of parallel merges introduced by this

replacement is called a parallel-merge region.

The Type-2 construction rules are illustrated in Fig. 5.

The branch region allows cycles in order to express arbitrary

branch and loop structures. The fork region does not allow

cycles since that introduces further conditions for liveness.

But this does not affect the expressive power of Type-2 petri-

nets. Parallel-merge regions implement the run-time selection

of values at the exit of a branch, such as variable d in Fig. 9.

V. ARBITER-LESS SHARING OF DATA-PATH OPERATORS

We describe an optimization that reuses a data-path operator

for multiple operations that are never active at the same time.

This avoids arbitration overheads since there is no contention.

The optimization uses an almost linear static analysis of the

control-path to identify sharing opportunities.

Definition 5.1: An operator is said to be active at a given

instant of time if and only if it has received a request, but not

yet emitted an acknowledgment.

Definition 5.2: Two operators M1 and M2 are said to be

compatible if and only ifM1 does not receive a request while

M2 is active, and vice versa.

A. Compatibility in Type-2 petri-nets

In a Type-2 petri-net, compatibility of two transitions is

determined by the nature of the smallest STPR that contains

them, which we term as their nearest common ancestor (NCA).

Two operations can potentially be incompatible only if the

NCA is a fork region; operations in a branch or series NCA

region are always compatible.

Fig. 6 shows a fork region in a Type-2 petri-net with

numbered segments and their compatibility with each other.

(a) A fork region

1 2 3 4 5

1 Y - Y Y Y

2 - Y - Y -

3 Y - Y Y -

4 Y Y Y Y -

5 Y - - - Y

(b) Compatibility

Fig. 6. Compatibility in a Type-2 petri-net.

(a) Fork. (b) Union at a join. (c) Reduction at a join.

Fig. 7. Labeling scheme.

Segments 1 and 2 are incompatible since they can execute
concurrently. But segments 1 and 4 are compatible, since a
sequence is enforced by the path through segment 3.
Definition 5.3: Two elements e1 and e2 in a Type-2 petri-

net are compatible if their NCA is not a fork region or if there

is a directed path within the NCA region which joins the two

elements.

B. Compatibility labeling

We use a labeling scheme to record the paths reaching a

petri-net element from the init transition. The labeling is a
symbolic execution of the Type-2 petri-net. Two elements can

be compared for compatibility using their labels instead.

A label is a set L = {l0, l1, . . .} where each l ∈ L is a
sequence of n label elements l = [a0, a1, . . . , an−1]. A label
element is a 3-tuple (f, k, i) made of a fork identifier f , the
fan-out k of the fork, and an index i into the fan-out. A label
element a = (f, k, i) is said to indicate the fork f .
The product of two labels (A ∗ B) is defined as the
concatenation of pairs of sequences from the two labels:

A ∗B = {a.b|∀a ∈ A, ∀b ∈ B}. For convenience, the product
operator is overloaded to represent the product of a label with

a single element: A ∗ b = A ∗ {[b]}.

C. Labeling scheme

Parallel-merge regions are first reduced to simple merges,

which simplifies the labeling without affecting compatibility.

The init transition is assigned an empty label. The label of
every element is computed from its predecessors. Only forks

and joins result in a new label; other elements are assigned

the same label as their predecessors.

1) Labeling at a fork: If L is the label assigned to a fork f
with k(f) successors, then each successor si is assigned the

label L ∗
(

f, k(f), i
)

, as shown in Fig. 7(a).

2) Labeling at a join: In the general case — such as

transition m′ in Fig.6(a) — a join is assigned the union of the

labels assigned to all its predecessors, as shown in Fig. 7(b).



Fig. 8. Label Representation Graph.

But when the join receives all the tokens starting from a

particular fork — such as transitionm in Fig.6(a) — the union
is reduced to remove the label elements indicating that fork,

as shown in Fig. 7(c). Usually, only a subset of the union is

reduced, since paths from unrelated forks may reach a join.

The reduction at the join ensures that the labeling scheme

is “closed” — all the extensions created within a fork region

disappear at the exit of a fork region[3]. Finally, the fin
transition is assigned an empty label.

D. Label Representation Graph (LRG)

The compatibility label is a record of every path reaching

that element from the init transition, and can thus have an
exponential size (the number of elements in the label set can

be exponential in the size of the petri-net). Comparing two

labels for compatibility can also have exponential complexity,

since every sequence in one label has to be compared with

every sequence in the other label.

We eliminate the exponential complexity by using a label

representation graph (LRG) as shown in Fig. 8. The LRG

represents labels as nodes, where edges represent the manner

in which a label is constructed from other labels. The LRG is

a directed acyclic graph with a single root node that represents

the empty label.

Let l(u) be the label represented by a node u. An edge (u, v)
in the LRG may itself be labeled with a label element e, in
which case it represents the product operation l(v) = l(u) ∗ e.
If multiple incoming edges are incident at a node v, then it
represents a label that is the union of all its predecessors. In

a well-formed LRG, multiple incoming edges are incident on

a node if and only if they are all unlabeled.

The LRG is a compact representation of compatibility labels

in a Type-2 petri-net. Each path reaching a node u from the
root of the LRG represents one label sequence in the label

l(u). The following result is proved in [3].
Theorem 5.1: Two operations with labels represented by

nodes u and v in the LRG are said to be compatible, if and
only if one of the following is true:

1) There is a path from u to v or vice versa.
2) There exists a node a in the LRG, from which u and v
are reachable along non-intersecting paths such that one

of the following is true:

a) One or both paths begin with an unlabeled edge.

d = m + n

b = m - n

if (b > 0):

a = b + c

d = e + a

x = d + 2

(a) Pseudo-code.

d1 = m + n

b = m - n

if (b > 0):

a = b + c

d2 = e + a

d3 = φ(d1,d2)
x = d3 + 2

(b) SSA form.

Fig. 9. A code fragment and its SSA form.

b) The labels on the first edges in the paths indicate

different forks.

E. Shared operators

We have used the LRG to implement arbiter-less sharing in

the AHIR synthesis flow. We use a simple greedy algorithm

to generate cliques of pair-wise compatible operations that are

mapped to a single operator in the data-path. The incoming

data-edges are routed through multiplexers; the registers for

the outgoing data-edges are not shared.

This scheme for arbiter-less sharing is quite effective in

reducing hardware costs, demonstrating support for scalable

optimizations in AHIR. Synthesis results (targeted at field pro-

grammable gate arrays) show improvements in the throughput-

area ratio (measured in Hz / slice) in the range of 15–190%
depending on the application[3].

VI. THE SYNTHESIS FLOW

The synthesis flow uses the LLVM Compiler Framework4

to parse and optimize the input C program. The resulting

optimized LLVM bytecode is then translated to an AHIR

specification using a CDFG as an intermediate step.

A. C to CDFG

The starting point is a C program. In the current imple-

mentation, the only restrictions on the C program are that the

call graph should not contain any cycles, and that function

pointers should not be used (pointers to data can be used in

the usual way)5. The C program is first converted to LLVM

byte-code, which is based on the SSA form[11]. This is a

purely functional form that removes the notion of individual

variables from a program. Every assignment to a variable is

a distinct value; multiple assignments that occur in branches

are handled by a special instruction called the φ-function, as
shown in Fig. 9.

The LLVM bytecode is then translated to a control data flow

graph (CDFG)[12]-[16], as shown in Fig. 10(a). The CDFG is

a hypergraph where the nodes represent instructions and edges

represent control and data flow. A data edge is a hyperedge

with a single tail and one or more heads, that represents a value

in the program, defined by the tail and used by the heads. The

control edge has a single tail and a single head, and represents

the passing of control from the tail to the head.

4http://llvm.org/
5These restrictions are not fundamental to the approach, but we have not
gotten around to eliminating them so far.



Each value in the program that is defined by some in-

struction u and used by a set of instructions sv is mapped

a data edge in the CDFG where the tail nu corresponds

to the instruction u and the set of heads has a one to one
correspondence with the set sv. Control edges are created

in a manner that exposes instruction-level parallelism in the

program. Sequence is enforced only where the execution of a

node may affect execution of some other node. For example,

when a node v uses the output of a node u, a control edge is
introduced to ensure that v is executed only when u is finished.
Similarly, control edges are used to eliminate hazards between

pairs of load instructions, store instructions and function calls

that may access the same memory location, as determined by

a memory reference analysis.

B. Generating AHIR from a CDFG

The AHIR specification is generated by piece-wise trans-

lation. Each node or edge in the CDFG is replaced by an

equivalent AHIR fragment, and the fragments are connected

to obtain the control and data paths. Fig. 10 shows the input

CDFG and the resulting AHIR specification for our example.

Elements that are obvious from the context have been hidden.

Two structures are shown in detail — a decoder element (D1)

that examines the condition for a branch, and a multiplexer

element (P1) that implements a φ-function.

C. Correctness

The method used by our synthesis flow guarantees that the

generated circuit specification is correct by construction. The

first step of translating a C program to a CDFG is a routine

one that does not need to be verified separately.

The correctness of the second step (CDFG to AHIR) is

shown as follows[3]: suppose that A was the AHIR speci-
fication generated from the reference CDFG G. Then every
execution sequence in A is a member of the set of possible
execution sequences of G. Now, from A, we construct a new
CDFG G′ such that every execution sequence of G′ is an

element of the set of execution sequences of A. Now, G′ and

G are shown to be isomorphic, so that their sets of execution
sequences are in a one-to-one correspondence with each other.

This shows that the sets of execution sequences in A and G
are in a one-to-one correspondence.

D. AHIR to VHDL

The conversion of an AHIR circuit to VHDL is straightfor-

ward. Currently, we produce a system which is synchronous

and uses a single clock (positive edges only). Each symbol

exchanged between the control path and the data path is coded

by a pulse which is sampled high by exactly one clock edge.

Symbols are associated with transitions as indicated earlier.

Places in the AHIR control path are handled as follows:

1) If a place has a single predecessor transition which is

an output transition and a single successor which is an

input transition, then it is optimized away.

2) If a place has a single successor transition which is an

output transition, and if this successor transition is not

a join, then the place is modeled by an OR gate whose

inputs are its predecessor transitions.

3) In all other cases, the place is modeled as a finite state

machine with two states, with the state being set by any

of its predecessors, and reset by any of its successors.

The number of places that need to be modeled by state

machines is usually a small fraction of the total number of

places. Output transitions are modeled by AND gates, with

each predecessor place to the transition providing an input to

the AND gate. The cost of implementing the control path is

thus minimal in relation to the implementation of the data path

and memory subsystem.

Operators in the data path compute their results in a single

clock cycle, and the outputs are registered. Shared operators

are constructed using multiplexers in a standard manner. The

instantiation of operators in the data path, the interconnections

within the data path and those between the data path and the

control path mirror those in the AHIR representation, except

for the fact that several operators in the AHIR data path can

be mapped to the same physical operator (through arbiterless

sharing). The inter module link layer is completed using the

call graph corresponding to the source code.

The memory sub-system is implemented as a multiple-

bank (each bank is a single-cycle synchronous SRAM) pipe-

lined memory which offers as many load/store ports as there

are load/store operators across the data paths. The memory

sub-system is constructed using a request-complete protocol

and ensures that read/write operations complete in the order

that they were requested. The number of memory banks in

the memory subsystem, and the degree of pipe-lining are

parameters/generics that can be selected based on the memory

reference characteristics of the application.

VII. EXPERIMENTAL EVALUATION OF THE END-TO-END

SYNTHESIS FLOW

We have implemented a complete C-to-ASIC tool-flow

based on commercial synthesis tools from Cadence and Syn-

opsys. We selected the following set of applications for the

experiments (the task used to characterize the energy dissipa-

tion is also indicated).

1) A5/1, a simple stream cipher (basic task: produce one

key bit).

2) AES, the standard AES-128 block cipher (basic task:

encrypt a 128-bit block).

3) LPK, the standard Linpack benchmark (basic task: LU

factorization of 100 × 100 matrix with floating point
entries).

4) FFT (basic task: 64 point floating point FFT).

5) RBT, the red-black tree data structure (basic task: inser-

tion of 1000 elements into the tree).

In each case, the VHDL generated by the C-to-RTL flow

was synthesized using Synposys Design Compiler, using the

OSU Standard Cell Library6 for the TSMC 0.18µ technology.
Memories were modeled using CACTI SRAM models[17]7.

6http://vcag.ecen.okstate.edu/projects/scells/
7http://www.hpl.hp.com/research/cacti/



(a) CDFG. (b) Control Path. (c) Data Path.

Fig. 10. Translating a CDFG to AHIR.

The resulting net-list was mapped to layout using the Cadence

SOC Encounter tool. No human intervention was used in

the entire process from C to the final layout (other than

specifying the operating frequency to the automatic place-and-

route tools). The total time needed for the entire process (from

C to layout) was of the order of a few minutes for A5/1 to

a few hours for the LPK case. A simulation based toggle file

was then used with the extracted net-list to estimate power

dissipation in each of the generated circuits. The reciprocal

of the energy used for completing a task is equivalent to

the throughput achieved for each watt of power supplied,

commonly termed as performance per watt

TABLE I

AREA/DELAY/POWER/ENERGY DATA FOR AHIR CIRCUITS IN THE TSMC

0.18µ TECHNOLOGY

Area Freq Delay Power Energy

(mm2) (MHz) (ms) (mW) (µJ)

A5/1 1.45 71.4 0.28µs 73 20.44 nJ

AES 6.5 71.4 0.428 338 144.7

FFT 5.1 41.7 0.155 95 14.7

LPK 27 41.7 37.7 273 10300

RBT 18 41.7 9.9 153 1511

As a reference to judge the energy efficiency of the AHIR

generated circuits, we consider a popular low power processor

(henceforth denoted by P ), namely the Intel Atom N270
processor8, which is built in Intel’s 45nm technology. This
processor is readily available, combines high performance with

low power dissipation, has full floating point support, and is

a part of many low power computing devices. The sample

set of C programs was run on the processor P (exactly the
same program used in the hardware generation was run on the

8http://www.intel.com/products/processor/atom/

index.htm

processor). In each case, the number of cycles needed to finish

one task (as described above) was measured. The data sets

for the programs were small enough to fit into the processor

cache, and the cycle count was averaged across multiple runs.

These cycle counts were then used to find the delay and energy

consumption for the processor. All values for area, frequency

and power dissipation for the processor were obtained from

the corresponding data-sheet.

TABLE II

AREA/DELAY/POWER/ENERGY RESULTS FOR THE PROCESSORP BUILT IN

A 45nm PROCESS

Area Freq Delay Power Energy

(mm2) (MHz) (ms) (mW) (µJ)

A5/1 25 1600 0.12µs 2500 298.44 nJ

AES 25 1600 0.036 2500 89.362

FFT 25 1600 0.022 2500 55.64

LPK 25 1600 7.90 2500 19740

RBT 25 1600 0.36 2500 891.89

We find that the energy consumed per task by the 180nm
AHIR circuits is appreciably lower than that for the 45nm
processor P (except for AES and RBT). This is significant
because the processor P is implemented in a technology which
is four generations ahead of the AHIR circuits.

Now, suppose that we scale the energy numbers assuming

migration of the AHIR circuits from 180nm to the 45nm
technology node, using the following scaling rules (assume

that S = 45/180 = 0.25):

• The operating voltage is scaled from 1.8V to 0.9V .
• The internal capacitances are assumed to be scaled by S.
• The operating frequency of the generated circuit is scaled

by 1/S.
• Half of the total power dissipation of the 45nm circuits is
due to leakage[18], and the other half is due to switching



power. Note that this is a conservative estimate, and the

actual leakage is likely to be lower at the power levels

corresponding to the AHIR circuits. The leakage power

is a negligible fraction of the total power dissipation in

the 180nm technology.
• The area is scaled by S2.

Thus, the per task energy consumption due to switching

activity alone will scale by 1/16, and since we are assuming
that leakage power dissipation is half the total, the total per

task energy consumption of the circuit will scale by 1/8. The
area of the circuits will scale by 1/16. The power dissipation
will scale by 1/2 (this would have been 1/4 without leakage).
This scaling, though approximate, can be justified since the

area of the resulting circuits (in each case) is small, so that

interconnect effects are not likely to be pronounced.

TABLE III

AREA/DELAY/POWER/ENERGY RATIOS (PROCESSORP VALUES

RELATIVE TO THE SCALED AHIR VALUES)

Area Freq Delay Power Energy

A5/1 275.8 5.6 1.7 68.5 116.6

AES 61.5 5.6 0.34 14.8 4.9

FFT 78.4 9.6 0.57 52.6 30.3

LPK 14.8 9.6 0.84 18.3 15.3

RBT 22.2 9.6 0.15 32.7 4.7

In Table III, we tabulate the ratios of the performance

parameters area, frequency, delay, power and energy for the

processor P relative to the scaled values for the AHIR circuits
assuming the scaling rules shown above. From the table, we

see that across all applications, the energy consumed by AHIR

circuits is considerably lower than the processor (the energy

per task for the processor is between 4.7X and 116.6X that of
the corresponding AHIR circuit). The improvement is highest

in the case of bit-level manipulation applications such as

A5/1, and lowest in the case of random “pointer-chasing”

code. Note that the improvement in the case of floating point

programs (FFT and LPK) is also substantial. The delays in

completing the tasks are lower for the processor P in almost
all the cases. This is mainly due to the fact that currently, the

operators used in the AHIR generated RTL are not pipelined

or optimized in any manner during the logic synthesis and

physical design. This limits the operating clock frequency of

the circuits synthesized from the AHIR generated RTL.

VIII. CONCLUSION

We have presented a high-level synthesis flow that converts

an algorithm described in C into a VHDL description. The

synthesis flow uses a factored control-data-storage internal

representation and is correct by construction. On this inter-

nal representation, optimizations such as arbiter-less operator

sharing can be carried out in an efficient manner. The flow can

thus be applied to large programs describing a wide variety

of algorithms. Our experiments demonstrate that across this

variety of algorithms, an ASIC implemented using the RTL

generated by this high-level synthesis flow uses a significantly

lower energy per task (or equivalently, has higher performance

per watt) than industry-standard low-power microprocessors.

Thus, the range of algorithms which can be handled, and the

ease of obtaining an implementation which is likely to be more

energy efficient than a processor indicate that this high-level

synthesis flow provides an alternative to embedded processors

for implementing complex algorithms in hardware.
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